Posted: February 11, 2016

Direct ink writing 3D printer used to manufacture supercapacitors out of a graphene-based aerogel.
For the first time ever, scientists at Lawrence Livermore National Laboratory and UC Santa Cruz have successfully 3D-printed supercapacitors using an ultra-lightweight graphene aerogel, opening the door to novel, unconstrained designs of highly efficient energy storage systems for smartphones, wearables, implantable devices, electric cars and wireless sensors.
Using a 3D-printing process called direct-ink writing and a graphene-oxide composite ink designed at the Lab, the LLNL team was able to print micro-architected electrodes and build supercapacitors able to retain energy on par with those made with electrodes 10 to 100 times thinner.
The results were released online in the journal Nano Letters on Jan. 28.


Want to learn more about this topic?