Kevlar-Based Artificial Cartilage Mimics the Magic of the Real Thing

Water-rich biomimetic composites with abiotic self-organizing nanofiber network.

The artificial cartilage is very flexible yet resistant to tearing.

February 12, 2018 | Source: University of Michigan, ns.umich.edu, 15 Nov 2017, Katherine McAlpine

The unparalleled liquid strength of cartilage, which is about 80 percent water, withstands some of the toughest forces on our bodies.

Synthetic materials couldn't match it—until "Kevlartilage" was developed by researchers at the University of Michigan and Jiangnan University.

"We know that we consist mostly of water—all life does—and yet our bodies have a lot of structural stability," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering at U-M, who led the study. "Understanding cartilage is understanding how life forms can combine properties that are sometimes unthinkable together."

Many people with joint injuries would benefit from a good replacement for cartilage, such as the 850,000 patients in the U.S. who undergo surgeries removing or replacing cartilage in the knee.

While other varieties of synthetic cartilage are already undergoing clinical trials, these materials fall into two camps that choose between cartilage attributes, unable to achieve that unlikely combination of strength and water content.

The new Kevlar-based hydrogel recreates the magic of cartilage by combining a network of tough nanofibers from Kevlar—the "aramid" fibers best known for making bulletproof vests—with a material commonly used in hydrogel cartilage replacements, called polyvinyl alcohol, or PVA.