Optically Tunable Microwave Antennas for 5G Applications

Simulated surface currents on a slotted microstrip patch

Simulated surface currents on a slotted microstrip patch with illumination of a silicon superstrate. (University of Bristol)

May 21, 2018 | Source: University of Bristol, bristol.ac.uk, 15 November 2017

Multiband tunable antennas are a critical part of many communication and radar systems. New research by engineers at the University of Bristol has shown significant advances in antennas by using optically induced plasmas in silicon to tune both radiation patterns and operation frequency.


Conventional antenna tuning is performed with diodes or Micro-Electro-Mechanical Systems (MEMS) switches. However, these approaches have significant drawbacks as systems become more complex and move to higher frequencies, which is anticipated for 5G systems.

The first paper, published in IET Optoelectronics, co-authored by Dr Chris Gamlath, Research Associate in RF Engineering during his PhD, shows how a silicon superstrate placed over a slotted microstrip patch can be used to tune radiation patterns.

The second paper published in IEEE Transactions on Antennas and Propagation, co-authored by Dr Michael Collett during his PhD, demonstrates how silicon can be placed within the slots of an air-spaced, cavity-backed antenna to perform frequency and pattern tuning that achieves high efficiencies.

The research could dramatically improve the performance of future communication and radar systems because without this technology, it may not even be possible to implement certain types of 5G systems.