Scientists Mimic Neural Tissue in Army-Funded Research

Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip

New breakthrough material could lead to future autonomous soft robotics, dual sensors and actuators for soft exoskeletons, or artificial skins. (source: ARL)

October 8, 2018 | Source: U.S. Army,, 15 Mar 2018, ARL Public Affairs

"Enabling a breakthrough in robotic augmentation of high-tempo military maneuver and operations requires disrupting the notion of an intelligent system as a rigid multi-body platform optimized for slow, carefully planned movement in uncluttered terrain," Stanton said. "Fundamental research is needed to transpose smart materials from the current paradigm of fixed properties and mechanics with extrinsic and centralized control to a new paradigm of soft active composites with unprecedented dynamic functionality realized through maximal substrate embedding of tightly integrated, decentralized, and highly distributed intrinsic (materials-based) sensing, actuation, and control."

U.S. Army-funded researchers at Brandeis University have discovered a process for engineering next-generation soft materials with embedded chemical networks that mimic the behavior of neural tissue. The breakthrough material may lead to autonomous soft robotics, dual sensors and actuators for soft exoskeletons, or artificial skins.

The research lays the foundations for futuristic soft active matter with highly distributed and tightly integrated sensing, actuation, computation and control, said Dr. Samuel Stanton, manager of the Complex and Dynamics Systems Program within the Engineering Sciences Directorate at the Army Research Office, an element of the U.S. Army Research Laboratory, located at Research Triangle Park in Durham, North Carolina.

The research team, led by Professor of Physics Dr. Seth Fraden of Brandeis University, drew inspiration from the mesmerizing sinuous motion of a swimming blue eel and puzzlingly large gap between how natural systems move and the lack of such coordinated and smooth movement in artificial systems.

Fraden's work sought to answer key questions, such as why is there such a void between the animate and inanimate that we never confuse the two, and if engineers could create materials with similar attributes to living organisms, but constructed from inanimate objects, can we do so using only chemicals and eschew use of motors and electronics?

Looking deeper, Fraden studied how a type of neural network present in the eel, named the Central Pattern Generator, produces waves of chemical pulses that propagate down the eel's spine to rhythmically drive swimming muscles.

A breakthrough was made when Fraden and his team realized that the same CPG dynamics could be captured on a non-biological platform if they used a well-known oscillating chemical process known as the Belousov–Zhabotinsky reaction