$0.00

Two-Stage Power Management System Boosts Energy-Harvesting Efficiency

February 13, 2017 | Source: Georgia Tech News Center, John Toon

A two-stage power management and storage system could dramatically improve the efficiency of triboelectric generators that harvest energy from irregular human motion such as walking, running or finger tapping.

The system uses a small capacitor to capture alternating current generated by the biomechanical activity. When the first capacitor fills, a power management circuit then feeds the electricity into a battery or larger capacitor. This second storage device supplies DC current at voltages appropriate for powering wearable and mobile devices such as watches, heart monitors, calculators, thermometers – and even wireless remote entry devices for vehicles.

By matching the impedance of the storage device to that of the triboelectric generators, the new system can boost energy efficiency from just one percent to as much as 60 percent. The research was reported December 11 in the journal Nature Communications.

“With a high-output triboelectric generator and this power management circuit, we can power a range of applications from human motion,” said Simiao Niu, a graduate research assistant in the School of Materials Science and Engineering at the Georgia Institute of Technology. “The first stage of our system is matched to the triboelectric nanogenerator, and the second stage is matched to the application that it will be powering.”

Communities: