Army Eyes Getting Into the Ship Killing Business With This Cruise Missile

As the U.S. military rolls out its budget request for the 2019 fiscal year, one area that is likely to see newly increased attention is the development and purchase of land-based anti-ship weapons. The U.S. Army is already planning to sink a target ship with a truck-mounted anti-ship cruise missile in a major exercise as concerns grow about both near-peer and smaller states expanding their ability to control strategic waterways around the world, especially China’s militarization of the South China Sea. In January 2018, Navy Recognition... Read More

Model of the Month

BRAWLER – BRAWLER simulates air-to-air combat between multiple flights of aircraft in both the visual and beyond-visual-range (BVR) arenas. This simulation of flight-vs.-flight air combat is considered to render realistic behaviors for military trained fighter pilots. BRAWLER incorporates value-driven and information-oriented principles in its structure to provide a Monte Carlo, event-driven simulation of air combat between multiple flights of aircraft with real-world stochastic features.

Get this model!
VOICE FROM THE COMMUNITY

Dr. James Bray, Chief Scientist, General Electric (GE) Global Research

For over four decades, I've supported GE Global Research in leveraging our multidisciplinary core capabilities and a workforce of over 1,000 subject matter experts to design and develop advanced solutions to complex, challenging problems. I've worked for many years with GE Healthcare on magnetic resonance imaging (MRI), which requires significant expertise in superconductivity and cryogenics. I've also been involved in the design and development of several prototype superconducting motors and generators, as well as the study and advancement of many types of energy and power sources. For more information about GE Research, visit https://www.ge.com/research/.

Apply to be part of our network of over 1,000 subject matter experts.

UPCOMING EVENTS

Automated ISR and Battle Management Symposium
12 February 2019 to 13 February 2019

Fundamentals of Random Vibration and Shock Class
19 February 2019 to 21 February 2019

Military Sensing Symposium 2019 Parallel Conference
25 February 2019 to 28 February 2019

Additive Manufacturing for Aerospace and Space
26 February 2019 to 28 February 2019

Want your event listed here? Let us know!

BULLETIN BOARD

IAC Director Thomas Gillespie is Keynote Speaker at the 5th Annual Defense Research and Development Summit

What to Expect From Shanahan’s DoD

Vulcan is Currently Transitioning to a Broader Community!

Have an idea for a topic? Please contact us to write an article!
RECENT NEWS

Scalable Manufacturing Process Spools Out Strips of Graphene

Eel-Inspired 3D-Printed HydrogelInstantly Generates Electricity

DNA Tagging Detects Counterfeit Equipment

BionicFinWave’s Undulating Fin Propulsion May Give Underwater Drones More Precise Control

Can the Intel and Defense Community Conquer Data Overload?

Here’s How Air Mobility Command Will Improve Aircraft Survivability

Army Looks Into Laser-Powered Drones

Better Tools Along the Border

China’s Electromagnetic Railgun is Apparently Already Roaming the High Seas
Join us for a live webinar presentation on “The Cold Spray Revolution!”
Wednesday 30 January 2019 – 12:00 to 12:45 p.m. EST

The deposition of metal powders onto surfaces has been done by thermal spray for over 100 years. In this process, metal particles are melted and blown onto the coated surface. Thermal spray processes thus apply engineered coatings to modify the surface properties of an item. These coatings can provide such properties as enhanced wear resistance, thermal barriers, electrical/thermal conductivity, hard-chrome replacement, and corrosion protection. The coatings can be applied to turbine blades, shaft seals, medical implants, etc.

The extreme heat required in thermal spray can compromise the powder and substrate characteristics. Cold spray was introduced 30 years ago in part to prevent this heat damage. Cold spray accelerates powder particles to very high velocity in a supersonic nozzle, and a deposit is formed when the particles impact on the surface. Read More

ABOUT THIS PUBLICATION: The inclusion of hyperlinks does not constitute an endorsement by the DSIAC or United States Department of Defense (DoD) of the respective sites, nor the information, products, or services contained therein. The DSIAC is a DoD sponsored Information Analysis Center with policy oversight provided by the Office of Under Secretary of Defense for Research and Engineering (OUSD(R&E)) and is administratively managed by the Defense Technical Information Center (DTIC). Reference herein to any specific commercial products, process, or services by trade name, trademark, manufacturer, or other-wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the DSIAC.