3D Printing Could Make JPADS More Accurate and Cost-Effective

Home / Articles / External Non-Government

defense_industry_daily_jpads_o

June 5, 2017 | Originally published by Date Line: June 5 on

The United States Army, Air Force, and Marines have been using the aerial delivery systems (ADS) since WWII, so obviously 3D printed drones have major applications in the military – they’re not just for getting a pizza delivered. Another aerial tool that the military employs is a glider, which differs from a drone because it doesn’t require an engine to achieve free flight. The heavier-than-air glider works through the reaction of air against its lifting surfaces; a good example is the tried and true paper airplane. A glider system that is frequently used by the United States Marine Corps (USMC) is the Joint Precision Aerial Delivery System, or JPADS, which uses a GPS guidance system to fly over hostile territory for tactical air delivery resupply missions.

The overall objective of Henderson’s thesis was to use rapid prototyping and fast, cost-effective modern manufacturing techniques, like 3D printing, to construct gliding prototype airframes, as well as estimating the cost of these types of fielded systems and putting COTS electronic components through their paces, to test how viable they really are.